Bohmian dynamics on subspaces using linearized quantum force.
نویسندگان
چکیده
In the de Broglie-Bohm formulation of quantum mechanics the time-dependent Schrodinger equation is solved in terms of quantum trajectories evolving under the influence of quantum and classical potentials. For a practical implementation that scales favorably with system size and is accurate for semiclassical systems, we use approximate quantum potentials. Recently, we have shown that optimization of the nonclassical component of the momentum operator in terms of fitting functions leads to the energy-conserving approximate quantum potential. In particular, linear fitting functions give the exact time evolution of a Gaussian wave packet in a locally quadratic potential and can describe the dominant quantum-mechanical effects in the semiclassical scattering problems of nuclear dynamics. In this paper we formulate the Bohmian dynamics on subspaces and define the energy-conserving approximate quantum potential in terms of optimized nonclassical momentum, extended to include the domain boundary functions. This generalization allows a better description of the non-Gaussian wave packets and general potentials in terms of simple fitting functions. The optimization is performed independently for each domain and each dimension. For linear fitting functions optimal parameters are expressed in terms of the first and second moments of the trajectory distribution. Examples are given for one-dimensional anharmonic systems and for the collinear hydrogen exchange reaction.
منابع مشابه
Bohmian mechanics with complex action: a new trajectory-based formulation of quantum mechanics.
In recent years there has been a resurgence of interest in Bohmian mechanics as a numerical tool because of its local dynamics, which suggest the possibility of significant computational advantages for the simulation of large quantum systems. However, closer inspection of the Bohmian formulation reveals that the nonlocality of quantum mechanics has not disappeared-it has simply been swept under...
متن کاملThe impact of P/E ratio and price return on the stock market Bohmian quantum potential approach
Price return and P/E are two important factors for a lot of investors based on the latest studies by researchers in Tehran Stock market; however, it is expected that the price and the variation of that affect the return and the P/E of any given market as a complicated system. The Bohmian quantum mechanics used referring to the time correlation of return and P/E of the stock market under conside...
متن کاملUltrafast dynamics induced by the interaction of molecules with electromagnetic fields: Several quantum, semiclassical, and classical approaches
Several strategies for simulating the ultrafast dynamics of molecules induced by interactions with electromagnetic fields are presented. After a brief overview of the theory of molecule-field interaction, we present several representative examples of quantum, semiclassical, and classical approaches to describe the ultrafast molecular dynamics, including the multiconfiguration time-dependent Har...
متن کاملToward Quantum Behavioral Finances: Bohmian Approach
We apply methods of quantum mechanics for mathematical modeling of price dynamics at the financial market. We propose to describe behavioral financial factors (e.g., expectations of traders) by using the pilot wave (Bohmian) model of quantum mechanics. Trajectories of prices are determined by two financial potentials: classical-like V (q) (”hard” market conditions, e.g., natural resources) and ...
متن کاملQuantum dynamics with Bohmian trajectories.
We describe the advantages and disadvantages of numerical methods when Bohmian trajectory grids are used for numerical simulations of quantum dynamics. We focus on the crucial noncrossing property of Bohmian trajectories, which, numerically, must be given careful attention. Failure to do so causes instabilities or leads to false simulations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 120 15 شماره
صفحات -
تاریخ انتشار 2004